COMMISSION REGULATION (EU) No 1342/2014

of 17 December 2014

amending Regulation (EC) No 850/2004 of the European Parliament and of the Council on persistent organic pollutants as regards Annexes IV and V

(Text with EEA relevance)

THE EUROPEAN COMMISSION,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Regulation (EC) No 850/2004 of the European Parliament and of the Council of 29 April 2004 on persistent organic pollutants and amending Directive 79/117/EEC (¹), and in particular Article 7(4)(a) and (5) and Article 14(2) and (4) thereof,

Whereas:

- (1) Regulation (EC) No 850/2004 implements in the law of the Union the commitments set out in the Stockholm Convention on Persistent Organic Pollutants (hereinafter 'the Convention') approved by Council Decision 2006/507/EC (²), on behalf of the Community, and in the Protocol to the 1979 Convention on Long-Range Transboundary Air Pollution on Persistent Organic Pollutants (hereinafter 'the Protocol') approved by Council Decision 2004/259/EC (³), on behalf of the Community.
- (2) At the fourth meeting of the Conference of the Parties to the Convention from 4 to 8 May 2009, it was agreed to add chlordecone, hexabromobiphenyl, hexachlorocyclohexanes, including lindane, pentachlorobenzene, tetrabromodiphenyl ether, pentabromodiphenyl ether, hexabromodiphenyl ether and heptabromodiphenyl ether, as well as perfluorocotane sulfonic acid and its derivatives (hereinafter 'PFOS') to the Annexes to the Convention.
- (3) In view of concerns regarding the completeness and representativeness of scientific information on quantities and concentrations of the POP brominated diphenyl ethers and PFOS in articles and wastes, those substances were provisionally listed in Annexes IV and V to Regulation (EC) No 850/2004 without an indication of the maximum concentration limits.
- (4) Additional scientific data on quantities and concentrations of the POP brominated diphenyl ethers and PFOS in articles and wastes has now been assessed. It is therefore necessary to establish maximum concentration limits for these persistent organic pollutants without undue delay in order to ensure a uniform application of Regulation (EC) No 850/2004 and to avoid a continuous release of those substances into the environment.
- (5) At its 27th session from 14 to 18 December 2009, the Executive Body of the Protocol decided to add hexachlor-obutadiene, polychlorinated naphthalenes, and short-chain chlorinated paraffins to the Protocol.
- (6) At its fifth meeting from 25 to 29 April 2011, the Conference of the Parties to the Convention agreed to add endosulfan to the list of persistent organic pollutants to be eliminated worldwide, with some exemptions.
- (7) In view of the decisions taken by the Executive Body of the Protocol and the Conference of the Parties to the Convention, it is necessary to update Annexes IV and V to Regulation (EC) No 850/2004 in order to include those substances.
- (8) Regulation (EC) No 850/2004 should therefore be amended accordingly.
- (9) In order to allow companies and competent authorities sufficient time to adap to the new requirements, this Regulation should apply from 18 June 2015.

⁽¹⁾ OJ L 158, 30.4.2004, p. 7.

⁽²⁾ Council Decision 2006/507/EC of 14 October 2004 concerning the conclusion, on behalf of the European Community, of the Stockholm Convention on Persistent Organic Pollutants (OJ L 209, 31.7.2006, p. 1).

⁽³⁾ Council Decision 2004/259/EC of 19 February 2004 concerning the conclusion on behalf of the European Community, of the Protocol to the 1979 Convention on Long Range Transboundary Air Pollution on Persistent Organic Pollutants (OJ L 81, 19.2.2004, p. 35).

(10) The measures provided for in this Regulation are in accordance with the opinion of the Committee established by Article 39 of Directive 2008/98/EC of the European Parliament and of the Council (¹),

HAS ADOPTED THIS REGULATION:

Article 1

Regulation (EC) No 850/2004 is amended as follows:

- (1) Annex IV is replaced by the text in Annex I to this Regulation.
- (2) Annex V is amended in accordance with Annex II to this Regulation.

Article 2

This Regulation shall enter into force on the twentieth day following that of its publication in the Official Journal of the European Union.

It shall apply from 18 June 2015.

This Regulation shall be binding in its entirety and directly applicable in all Member States.

Done at Brussels, 17 December 2014.

For the Commission
The President
Jean-Claude JUNCKER

⁽¹⁾ Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008, p. 3).

ANNEX I

'ANNEX ${\it IV}$ List of substances subject to waste management provisions set out in Article 7

Substance	CAS No	EC No	Concentration limit referred to in Article 7(4)(a)
Endosulfan	115-29-7 959-98-8 33213-65-9	204-079-4	50 mg/kg
Hexachlorobutadiene	87-68-3	201-765-5	100 mg/kg
Polychlorinated naphthalenes (1)			10 mg/kg
Alkanes C10-C13, chloro (short-chain chlorinated paraffins) (SCCPs)	85535-84-8	287-476-5	10 000 mg/kg
Tetrabromodiphenyl ether C ₁₂ H ₆ Br ₄ O			Sum of the concentrations of tetra bromodiphenyl ether, pentabromo diphenyl ether, hexabromodipheny
Pentabromodiphenyl ether C ₁₂ H ₅ Br ₅ O			ether and heptabromodipheny ether: 1 000 mg/kg
Hexabromodiphenyl ether C ₁₂ H ₄ Br ₆ O			
Heptabromodiphenyl ether C ₁₂ H ₃ Br ₇ O			
Perfluorooctane sulfonic acid and its derivatives (PFOS) $C_8F_{17}SO_2X$ (X = OH, Metal salt (O-M $^+$), halide, amide, and other derivatives including polymers)			50 mg/kg
Polychlorinated dibenzo-p-dioxins and diben- zofurans (PCDD/PCDF)			15 μg/kg (²)
DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane)	50-29-3	200-024-3	50 mg/kg
Chlordane	57-74-9	200-349-0	50 mg/kg
Hexachlorocyclohexanes, including lindane	58-89-9 319-84-6 319-85-7 608-73-1	210-168-9 200-401-2 206-270-8 206-271-3	50 mg/kg 50 mg/kg Go mg/kg
Dieldrin	60-57-1	200-464-	Gy mg/kg
Endrin	72-20-8	200-775-7	WANG CONTRACTOR OF THE PARTY OF
Heptachlor	76-44-8	200-962-3	30 mg/kg

Substance	CAS No	EC No	Concentration limit referred to in Article 7(4)(a)
Hexachlorobenzene	118-74-1	200-273-9	50 mg/kg
Chlordecone	143-50-0	205-601-3	50 mg/kg
Aldrin	309-00-2	206-215-8	50 mg/kg
Pentachlorobenzene	608-93-5	210-172-5	50 mg/kg
Polychlorinated Biphenyls (PCB)	1336-36-3 and others	215-648-1	50 mg/kg (³)
Mirex	2385-85-5	219-196-6	50 mg/kg
Toxaphene	8001-35-2	232-283-3	50 mg/kg
Hexabromobiphenyl	36355-01-8	252-994-2	50 mg/kg

⁽¹⁾ Polychlorinated naphthalenes means chemical compounds based on the naphthalene ring system, where one or more hydrogen atoms have been replaced by chlorine atoms.

The limit is calculated as PCDD and PCDF according to the following toxic equivalency factors (TEFs):

PCDD	TEF
2,3,7,8-TeCDD	1
1,2,3,7,8-PeCDD	1
1,2,3,4,7,8-HxCDD	0,1
1,2,3,6,7,8-HxCDD	0,1
1,2,3,7,8,9-HxCDD	0,1
1,2,3,4,6,7,8-HpCDD	0,01
OCDD	0,0003
PCDF	TEF
2,3,7,8-TeCDF	0,1
1,2,3,7,8-PeCDF	0,03
2,3,4,7,8-PeCDF	0,3
1,2,3,4,7,8-HxCDF	0,1
PCDD	TEF
1,2,3,6,7,8-HxCDF	0,1
1,2,3,7,8,9-HxCDF	0,1
2,3,4,6,7,8-HxCDF	0,1
1,2,3,4,6,7,8-HpCDF	0,01
1,2,3,4,7,8,9-HpCDF	0,01
OCDF	0,0003
Where applicable, the calculation method laid down	n in European standards EN 12.76% and EN 12766-2 stal apply
	n in European standards EN 12.265 and EN 12.766-2 shall apply.

ANNEX II

In Annex V, Part 2, the table is replaced by the following table:

'Wastes as cla	ssified in Commission Decision 2000/532/EC	Maximum concentration limits of substances listed in Annex IV (¹)	Operation	
10	WASTES FROM THERMAL PROCESSES	Alkanes C10-C13, chloro (short-chain chlorinated paraffins) (SCCPs): 10 000 mg/kg;	Permanent storage shall be allowed only when all the following conditions are met:	
10 01	Wastes from power stations and other combustion plants (except 19)	Aldrin: 5 000 mg/kg; Chlordane: 5 000 mg/kg; Chlordecone: 5 000 mg/kg; DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane): 5 000 mg/kg; Dieldrin: 5 000 mg/kg; Endosulfan: 5 000 mg/kg; Endrin: 5 000 mg/kg; Heptachlor: 5 000 mg/kg; Hexabromobiphenyl: 5 000 mg/kg; Hexachlorobenzene: 5 000 mg/kg;	Chlordane: 5 000 mg/kg; Chlordecone: 5 000 mg/kg; DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane): 5 000 mg/kg; Dieldrin: 5 000 mg/kg; Dieldrin: 5 000 mg/kg;	— safe, deep, under
10 01 14 * (²)	Bottom ash, slag and boiler dust from co-incineration containing hazardous substances			— salt mines;— a landfill site for hazardous waste, provided
10 01 16 *	Fly ash from co-incineration containing hazardous substances		eptachlor: 5 000 mg/kg; fied or partly stabilis where technically feasi as required for classifi	
10 02	Wastes from the iron and steel industry	Hexachlorobutadiene: 1 000 mg/kg; Hexachlorocyclohexanes, including	chapter 1903 of Decision 2000/532/EC. (2) The provisions of Counci	
10 02 07 *	Solid wastes from gas treat- ment containing hazardous substances	Hexachlorocyclohexanes, including lindane: 5 000 mg/kg; Mirex: 5 000 mg/kg; Pentachlorobenzene: 5 000 mg/kg;	lindane: 5 000 mg/kg; Mirex: 5 000 mg/kg; Pentachlorobenzene: 5 000 mg/kg; Direct and 2003 respectively.	Directive 1999/31/EC (*
10 03	Wastes from aluminium thermal metallurgy	Perfluorooctane sulfonic acid and its derivatives (PFOS) (C ₈ F ₁₇ SO ₂ X)	(3) It has been demonstrated that the selected operation is environmentally prefer-	
10 03 04 *	Primary production slags	(X = OH, Metal salt (O-M*), halide, amide, and other derivatives including polymers): 50 mg/kg; Polychlorinated Biphenyls (PCB) (³): 50 mg/kg; Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) (*): 5 mg/kg; Polychlorinated naphthalenes*: 1 000 mg/kg; Sum of the concentrations of tetrabromodiphenyl ether C ₁₂ H ₆ Br ₄ O), pentabromodiphenyl ether (C ₁₂ H ₅ Br ₅ O), hexabromodiphenyl ether (C ₁₂ H ₄ Br ₆ O)and heptabromodiphenyl ether (C ₁₂ H ₄ Br ₆ O) and heptabromodiphenyl ether (C ₁₂ H ₃ Br ₇ O): 10 000 mg/kg; Toxaphene: 5 000 mg/kg;	able.	
10 03 08 *	Salt slags from secondary production			
10 03 09 *	Black drosses from secondary production			
10 03 19 *	Flue-gas dust containing hazardous substances			
10 03 21 *	Other particulates and dust (including ball-mill dust) containing hazardous substances		√V.	
10 03 29 *	Wastes from treatment of salt slags and black drosses containing hazardous substances		CK: 00, "01,01,	
10 04	Wastes from lead thermal metallurgy	# Circ	S. C. O. C.	
10 04 01 *	Slags from primary and secondary production	NA	VIT CS	

'Wastes as c	lassified in Commission Decision 2000/532/EC	Maximum concentration limits of substances listed in Annex IV (1)	Operation
10 04 02 *	Dross and skimmings from primary and secondary production		
10 04 04 *	Flue-gas dust		
10 04 05 *	Other particulates and dust		
10 04 06 *	Solid wastes from gas treat- ment		
10 05	Wastes from zinc thermal metallurgy		
10 05 03 *	Flue-gas dust		
10 05 05 *	Solid waste from gas treat- ment		
10 06	Wastes from copper thermal metallurgy		
10 06 03 *	Flue-gas dust		
10 06 06 *	Solid wastes from gas treat- ment		
10 08	Wastes from other non- ferrous thermal metallurgy		
10 08 08 *	Salt slag from primary and secondary production		
0 08 15 *	Flue-gas dust containing hazardous substances		
0 09	Wastes from casting of ferrous pieces		
10 09 09 *	Flue-gas dust containing hazardous substances		
16	WASTES NOT OTHER- WISE SPECIFIED IN THE LIST		റ്
16 11	Waste linings and refractories		20 07.10°
6 11 01 *	Carbon-based linings and refractories from metallurgical processes containing hazardous substances	A THE CO	t.com 121,010
16 11 03 *	Other linings and refractories from metallurgical processes containing hazardous substances	NA CIL	:

'Wastes as c	classified in Commission Decision 2000/532/EC	Maximum concentration limits of substances listed in Annex IV (1)	Operation
17	CONSTRUCTION AND DEMOLITION WASTES (INCLUDING EXCAVATED SOIL FROM CONTAMI- NATED SITES)		
17 01	Concrete, bricks, tiles and ceramics		
17 01 06 *	Mixtures of, or separate fractions of concrete, bricks, tiles and ceramics containing hazardous substances		
17 05	Soil (including excavated soil from contaminated sites), stones and dredging spoil		
17 05 03 *	Soil and stones containing hazardous substances		
17 09	Other construction and demolition wastes		
17 09 02 *	Construction and demolition wastes containing PCB, excluding PCB containing equipment		
17 09 03 *	Other construction and demolition wastes (including mixed wastes) containing hazardous substances		
19	WASTES FROM WASTE MANAGEMENT FACIL- ITIES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER FROM INDUS- TRIAL USE		x.com 121,000 x.006, s.onoug x.est@cirs.onoug
19 01	Wastes from incineration or pyrolysis of waste		COW 15, 10116
19 01 07 *	Solid wastes from gas treat- ment	KAR INS	the cites is
19 01 11 *	Bottom ash and slag containing hazardous substances	NA STAN	* 62 * 62 * 62

'Wastes as cl	lassified in Commission Decision 2000/532/EC	Maximum concentration limits of substances listed in Annex IV (1)	Operation
19 01 13 *	Fly ash containing hazardous substances		
19 01 15 *	Boiler dust containing hazardous substances		
19 04	Vitrified waste and waste from vitrification		
19 04 02 *	Fly ash and other flue-gas treatment wastes		
19 04 03 *	Non-vitrified solid phase		

These limits apply exclusively to a landfill site for hazardous waste and do not apply to permanent underground storage facilities for hazardous wastes, including salt mines.

The calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall apply.

The limit is calculated as PCDD and PCDF according to the following toxic equivalency factors (TEFs):

PCDD	TEF
2,3,7,8-TeCDD	1
1,2,3,7,8-PeCDD	1
1,2,3,4,7,8-HxCDD	0,1
1,2,3,6,7,8-HxCDD	0,1
1,2,3,7,8,9-HxCDD	0,1
1,2,3,4,6,7,8-HpCDD	0,01
OCDD	0,0003
PCDF	TEF
2,3,7,8-TeCDF	0,1
1,2,3,7,8-PeCDF	0,03
2,3,4,7,8-PeCDF	0,3
1,2,3,4,7,8-HxCDF	0,1
1,2,3,6,7,8-HxCDF	0,1
1,2,3,7,8,9-HxCDF	0,1
2,3,4,6,7,8-HxCDF	0,1
1,2,3,4,6,7,8-HpCDF	0,01
1,2,3,4,7,8,9-HpCDF	0,01
OCDF	0,0003
OJ L 182, 16.7.1999, p. 1. OJ L 11, 16.1.2003, p. 27.'	1 × 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0,01 0,000 3 0,000

^(*) OJ L 182, 16.7.1999, p. 1.

Any waste marked with an asterisk "*" is considered as hazardous waste pursuant to Directive 2008/98/EC and is subject to the provisions of that Directive.

^(**) OJ L 11, 16.1.2003, p. 27.'